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ABSTRACT

An adaptive ensemble covariance localization technique, previously used in ‘‘local’’ forms of the ensemble

Kalman filter, is extended to a global ensemble four-dimensional variational data assimilation (4D-VAR)

scheme. The purely adaptive part of the localization matrix considered is given by the element-wise square of

the correlation matrix of a smoothed ensemble of streamfunction perturbations. It is found that these purely

adaptive localization functions have spurious far-field correlations as large as 0.1 with a 128-member en-

semble. To attenuate the spurious features of the purely adaptive localization functions, the authors multiply

the adaptive localization functions with very broadscale nonadaptive localization functions. Using the Navy’s

operational ensemble forecasting system, it is shown that the covariance localization functions obtained by

this approach adapt to spatially anisotropic aspects of the flow, move with the flow, and are free of far-field

spurious correlations. The scheme is made computationally feasible by (i) a method for inexpensively gen-

erating the square root of an adaptively localized global four-dimensional error covariance model in terms of

products or modulations of smoothed ensemble perturbations with themselves and with raw ensemble per-

turbations, and (ii) utilizing algorithms that speed ensemble covariance localization when localization functions

are separable, variable-type independent, and/or large scale. In spite of the apparently useful characteristics of

adaptive localization, single analysis/forecast experiments assimilating 583 200 observations over both 6- and

12-h data assimilation windows failed to identify any significant difference in the quality of the analyses and

forecasts obtained using nonadaptive localization from that obtained using adaptive localization.

1. Introduction

General background on the need for localization in

ensemble based data assimilation can be found in

Houtekamer and Mitchell (2001) and Hamill et al. (2001).

[See Evensen (2003) for a review of ensemble Kalman

filter research.] When Nonadaptive Ensemble Covariance

Localization (NECL) is used in ensemble data assimila-

tion (DA), raw ensemble covariances are attenuated by a

function that only depends on the physical distance be-

tween the covarying error variables. To try and improve

on this type of approach, Bishop and Hodyss (2007,

2009a,b) have introduced a variety of Adaptive En-

semble Covariance Localization (AECL) techniques.

These approaches allow the localization or attenuation

functions to widen (narrow) as the true error correlation

function widens (narrows). They also provide localization

functions that move with the flow so that observations of

variables at the end of a (long) data assimilation time

window can be used to correct upstream variables at the

beginning of the data assimilation window.

In the idealized DA models examined in Bishop and

Hodyss (2007, 2009a,b), AECL only showed a significant

benefit over NECL in systems in which either (i) the

width of the true error correlation function was a strongly

varying function of space or time and/or (ii) the true error

correlation function moved a distance greater than or

equal to the width of the optimally tuned nonadaptive

localization function. As such, an outstanding question

is whether the error correlation functions associated

with modern numerical weather prediction (NWP) models

exhibit enough variability for AECL to be significantly

superior to NECL. This study begins to address this

question by comparing AECL and NECL performance

in experiments using the Navy Operational Global At-

mospheric Prediction System (NOGAPS; Hogan and

Rosmond, 1991).
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To illustrate AECL methods within the context of a

global numerical weather prediction model, Bishop and

Hodyss (2007, 2009b) incorporated them into a large ob-

servation volume local ensemble Kalman filter (Ott et al.

2004; Hunt et al. 2007). These local observation volumes

enabled sophisticated AECL schemes to be implemented

in a cost-efficient way. This paper, together with the com-

panion paper Bishop et al. (2011), extends this work by

showing how AECL can also be cost efficiently included in

global ensemble four-dimensional variational data assim-

ilation (4D-VAR). The motivation for this extension to

a nonlocal global framework is as follows.

Local observation volumes are inappropriate for long-

time window data assimilation because errors are liable

to propagate out of observation volumes. Local ap-

proaches limit the effectiveness of some variational tech-

niques for bias correction and the estimation of forecast

and observation error variances. There is a growing in-

terest in the use of localized ensemble covariances in three-

dimensional variational data assimilation (3D-VAR) and

4D-VAR schemes evident in papers by Lorenc (2003),

Buehner (2005), Buehner et al. (2010a,b), Wang et al.

(2007), Liu et al. (2009), and others. Buehner et al.

(2010a,b) found that an ensemble 4D-VAR scheme that

used NECL but did not use a tangent linear model or ad-

joint, outperformed a version of the operational 4D-VAR

scheme both in the tropics and Southern Hemisphere, but

not in the northern extratropics.

The promise of improving 4D-VAR with ensemble

covariances is a particularly strong motivation for this

study because at the authors’ research laboratory, a

major effort has been underway for the last 9 yr to

create the world’s first operational weak constraint 4D

global variational data assimilation system called the

Naval Research Laboratory (NRL) Atmospheric Vari-

ational Data Assimilation System–Accelerated Repre-

senter (NAVDAS-AR; Xu et al. 2005). NAVDAS-AR

became the operational data assimilation scheme for

global model atmospheric forecasting in September of

2009. NAVDAS-AR is the only observation space-based

4D-VAR system currently used for operational weather

forecasting. El Akkraoui et al. (2008) refer to this ob-

servation space form as the dual form of 4D-VAR.

While the NAVDAS-AR code was under construc-

tion many aspects of it were in a rapid state of flux. In

addition, the authors were unsure about how best to in-

corporate AECL and/or NECL within NAVDAS-AR. For

these reasons, a decision was made to create a prototype

observation space ensemble 4D-VAR using both NECL

and AECL outside of the developing NAVDAS-AR code

so that experimentation on the prototype could inform

the final implementation of NECL and AECL within

NAVDAS-AR. This paper together with a companion

paper (Bishop et al. 2011) reports on the results of these

efforts. This paper’s aims are to give the first demonstra-

tion of the incorporation of flow-adaptive ensemble co-

variance localization in a global 4D-VAR algorithm and

to describe a new ensemble covariance localization that

blends nonadaptive localization and adaptive localization.

The aim of the companion paper is to show how as-

sumptions about localization functions such as separabil-

ity, variable-type independence, and large length scales

can be used to greatly reduce the cost of ensemble co-

variance localization within 4D-VAR.

Section 2 gives the (new) partially adaptive localiza-

tion approach and describes how to incorporate it in

a 4D-VAR scheme. Section 3 describes experiments

that serve to test and tune the palette of localization

functions provided by the partially adaptive localization

approach, while section 4 provides a comparison of the

similarities and differences of optimally tuned adaptive

and nonadaptive localization functions. Conclusions

follow in section 5.

2. Partially Adaptive Ensemble Covariance
Localization

a. Definition of forecast error covariance matrix using
PAECL

The Partially Adaptive Ensemble Covariance Local-

ization (PAECL) forecast error covariance model con-

sidered in this paper uses both an adaptive localization

matrix C
A

and a nonadaptive localization matrix C
N

such that

P
f
P 5 P f � C

A
� C

N
5 ZZT � (ZsZ

T
s � ZsZ

T
s )� (WWT).

(1)

where 1 indicates the element-wise matrix product. In

(1), P f 5 ZZT 5 �K

k51zkzT
k is the raw sample covariance

matrix of a K member ensemble, zk is the kth column of

the square root of this matrix (typically, zk 5 x
k
/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

where x
k

is the kth ensemble perturbation about the

ensemble mean). The underlines in the above terms in-

dicate that they pertain to a set of states separated in time.

For example, if a 12-h data assimilation window was be-

ing considered with a 1-h discretization in time then

xT
k 5 [xT

k (0), xT
k (1), xT

k (2), . . . , xT
k (12)] where xk

T(ti) gives

the n-vector describing the state of the kth ensemble

perturbation at the ith discrete time ti defining the data

assimilation window. The matrix CA 5 (ZsZ
T
s � ZsZ

T
s ) is

the AECL matrix; where ZsZ
T
s 5 �L

i 5 1z
s
i z

sT
i is the sample

correlation matrix of a smoothed normalized ensemble.

Details of a generalized method for obtaining Zs are given
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in the appendix. While C
A

allows for variable-dependent

localization, in this paper we suppress the capability

because, using the techniques discussed in Bishop et al.

(2011), doing so reduces the cost of AECL by more

than a factor of 4. Here, the attenuation of the raw

covariance between two variables depends only on the

position of the two variables in space–time and not on

their variable type. This type of variable-type indepen-

dent localization was achieved by letting the smoothed

zs
i fields be based solely on horizontally and vertically

smoothed streamfunction perturbations. We also ex-

perimented with letting the smoothed zs
i fields be based

on smoothed equivalent potential temperature per-

turbations. It was found that AECL DA performance

was insensitive to this choice. Note that the number of

smoothed members L may be different to the number

K of raw members.

Since ZsZ
T
s is constructed from smoothed raw en-

semble perturbations, its correlation functions will tend

to have larger (shorter) length scales in regions where the

raw ensemble correlation length scales are large (short).

In addition, the correlation functions of ZsZ
T
s will tend to

propagate in a similar way to the raw ensemble correla-

tion functions. Finally, note that the correlation functions

associated with the adaptive localization (ZsZ
T
s )� (ZsZ

T
s )

can be widened or narrowed simply by respectively in-

creasing or decreasing the amount of smoothing used to

create Zs.

The matrix CN 5 WWT 5 �M

m 5 1wmwT
m is the NECL

matrix, W is its square root and wm denotes the mth

column of W. We assume that each column wm is rep-

resented in terms of a separable product of a horizontal

structure function and a vertical structure function. The

horizontal structure functions are given by spherical

harmonics while the vertical structure functions are

given by cosine functions. The 4D state wm is obtained

by replicating the mth 3D-structure function for each of

the variables and times that define the dimension and

ordering of the 4D state under consideration. This rep-

lication procedure means that no localization is performed

in time or with respect to intervariable covariances. In

general, the broader the localization functions defined by

C
N

, the fewer the number of columns M in W.

Note that PAECL in (1) reduces to pure AECL when

every element of CN is equal to 1; in other words, AECL

comes from PAECL when W 5 w1 5 1 (M 5 1) so that

CN 5 11T, where 1 is a vector of ones as long as the state

vector. Alternatively, (1) delivers pure NECL when

Zs 5 zs
1 5 1 (L 5 1) so that C

A
5 11T.

From the square root theorem given in Bishop and

Hodyss (2009b) and its more general form given in

Bishop et al. (2011), (1) may be written in the following

form:

P
f
P 5 �

K

k51
�

L

j51
�

L

i51
�
M

m51
(zk�zs

j� zs
i �w

m
)(zk� zs

j� zs
i �w

m
)T.

(2)

In other words, the forecast error covariance model

P
f
P 5 Z

P
ZT

P to be used in this paper is equal to the co-

variance of a KL2M member ensemble of perturbations

of the form zk � zs
j � zs

i � wm all stored as columns of

the matrix ZP. Each of these members represents an

element-wise product of a scaled raw ensemble member

zk with the product of two smoothed and normalized

ensemble members zs
j � zs

i and a nonflow-dependent

structure function wm. These function products amount

to modulations of the raw ensemble and it is for this

reason that we refer to the KL2M ensemble implied by

(2) as a modulation ensemble.

Whether the primal or dual form of 4D-VAR is imple-

mented, variational schemes require the repeated evalua-

tion of matrix vector products like ZPa and ZT
Pb. It may be

shown that

Z
P

a 5 �
K

k51
�

L

j51
�

L

i51
(zk� zs

j� zs
i )� (Wâ

ijk
) and

(ZT
Pb)

ijk
5 WT[(zk � zs

j � zs
i )� b], (3)

where âijk and (ZT
Pb)ijk are both M vectors listing all of

the elements of a and ZT
Pb, respectively, which are as-

sociated with the same values of i, j, and k such that aT 5

[âT
111, âT

211, . . . , âT
ijk, . . . , âT

LLK] and (ZT
Pb)T

5 [(ZT
Pb)T

111,

(ZT
Pb)T

211.., (ZT
Pb)T

ijk.., (ZT
Pb)T

LLK]. The term Wâ
ijk

may be

associated with a smoothly varying set of weights for the

structure given by (zk � zs
j � zs

i ). The companion paper

(Bishop et al. 2011) shows how the separable and ‘‘repli-

cated’’ nature of the columns of W can be used to rapidly

evaluate the right-hand sides of (3).

Since zs
j � zs

i 5 zs
i � zs

j, (2) reduces to the more com-

putationally efficient form:

P
f
P 5 �

K

k51
�

L

j51
�
M

m51
(zk� zs

j� zs
j�w

m
)(zk� zs

j� zs
j�w

m
)T

1 2 �
K

k51
�
L�1

j51
�
L

i5 j11
�
M

m51
(zk� zs

j� zs
i �w

m
)(zk � zs

j � zs
i � w

m
)T

5 ~Z
P

~ZT
P. (4)
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Thus, if all K members of the raw ensemble were lin-

early independent and all L members of the smoothed

ensemble were linearly independent and all M columns of

W were independent, then (4) indicates that the modu-

lation ensemble contains up to MK[L 1 L(L 2 1)/2] 5

MK[L(L 1 1)/2] linearly independent members. The

matrix ~ZP lists these members. We never have to hold all

of these members in memory as they can easily be pro-

duced as needed via element-wise products.

On the computers currently available at the larger

numerical weather prediction centers, it is feasible to

generate 128 member ensembles of 6–18-h forecasts in

a timely manner. Similarly, it is feasible to smooth each

of these forecasts in a timely manner to obtain L 5 K 5

128 smooth members. Hence, ensemble sizes for which

[K2(K 1 1)/2]M 5 [1282 3 129/2]M 5 1 056 768M are

readily obtained. Global numerical weather prediction

models will soon be running at 10-km horizontal reso-

lution with 100 vertical levels and about 10 variables at

each grid point. Such models will have approximately

1010 variables. Thus, with a K 5 128 member ensemble

at this resolution and a W with M 5 10 000 independent

structure functions, ZP could have as many linearly in-

dependent columns as there were model variables—

even at this very high resolution. In this way, (4) re-

moves Lorenc’s (2003) concern that ensemble-based

forecast error covariance models might be rank deficient

and unable to fit large numbers of very accurate obser-

vations.

b. Global variational solution for analysis correction

While we experimented with both the primal and dual

forms of 4D-VAR and found that they both gave similar

results, the results shown here pertain to the dual or

observation space form of 4D-VAR of which NAVDAS-

AR is an example. The dual form can be derived by

noting that the minimum error variance estimate xa of the

true 4D state x given the forecast x f and observations y is

xa 5 x f 1 P
f
PHT(HP

f
PHT 1 R)�1[y�H(x f )]

5 x f 1 P
f
PHTR�1/2(R�1/2HP

f
PHTR�1/2 1 I)�1R�1/2[y

�H(x f )] 5 x f 1 P
f
P

~HT(~HP
f
P

~HT 1 I)�1[ey�H(x f )]

(5)

assuming that the forecast and observation error co-

variance matrices are accurate (see e.g., Xu et al. 2005;

Daley and Barker 2001). The tildes in the last line of (5)

indicate that the matrices/vectors have been premulti-

plied by R�1=2. To avoid the high computational cost of

the matrix inverse indicated in (5), Daley and Barker

(2001) note that since the gradient of the quadratic form

J 5
1

2
bT(~HP

f
P

~HT 1 I)b� bT[ey�H(x f )] (6)

with respect to b is

›J

›b
5 (~HP

f

P
~HT

1 I)b� [ey�H(x f )]

5 (~HZ
P
ZT

P
~HT

1 I)b� [ey�H(x f )], (7)

the vector bmin that minimizes (6) makes ›J/›b 5 0 so

that

b
min

5 (~HP
f
P

~HT 1 I)�1[ey�H(x f )] (8)

and (5) is equivalent to

xa 5 x f 1 P
f
P

~HTb
min

. (9)

The vector bmin was obtained by minimizing (6) using

the conjugate gradient technique. The conjugate gradi-

ent technique exhibited steady convergence for all ex-

periments reported here. To ensure tight convergence in

all experiments, 128 iterations of the conjugate gradient

inner loop were performed to find bmin.

3. Experimental setup for tuning of localization
functions

a. Generation of truth run and pseudo-observations

We consider an idealization in which we let the true

state of the atmosphere xt be defined by a 30–42-h

forecast using NOGAPS run at horizontal spectral res-

olution T119 with 30 vertical levels (T119L30). The

NAVDAS analysis at 0000 UTC 23 June 2005 was used

to initialize this truth run. NAVDAS (Daley and Barker

2001) is the 3D-VAR form of NAVDAS-AR and it was

used for operational Navy weather forecasting until

September 2009 when it was replaced by its 4D-VAR

counterpart NAVDAS-AR (Xu et al. 2005). The first

guess x f was taken to be a 6–18-h forecast valid at the same

time as the 30–42-h forecast used to generate the truth.

The initial condition for this first guess was the NAVDAS

analysis 0000 UTC 24 June 2005. Since we wish to compare

the effect of adaptive localization in both 6- and 12-h DA

windows, this same 6–18-h forecast will be used as the

first guess for a 6-h DA window running from 0900 to

1500 UTC and for a 12-h DA window running from 0600

to 1800 UTC.

Figure 1 gives the vertical variation of global hori-

zontal averages of the root-mean-square (rms) error of

this first guess in wind and temperature at 1200 UTC.

The rms wind errors exceed 4 m s21 at the jet level and
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in the stratosphere while rms temperature errors exceed

1 K throughout much of the depth of the atmosphere.

Note that this ‘‘error’’ is entirely due to the NAVDAS

assimilation of observations over the 24-h period pre-

ceding the initialization of the first-guess run. Hence, the

structure of the difference between the two states is

partially determined by the quasi-isotropic error corre-

lation functions of NAVDAS and partially determined

by the atmospheric perturbation dynamics of both the

atmosphere and NOGAPS.

Pseudo-observations can be created at any desired

location by adding random numbers representative of

‘‘observation error’’ to variables from the true state se-

lected for ‘‘observation.’’ Two types of observational

network are considered. The first pertains to a 6-h DA

window and features 194 400 observations of zonal and

meridional wind (u, y) and temperature T at 0900, 1200,

and 1500 UTC for a total of 583 200 observations. We

shall hereafter refer to this observational network as the

6-h network. The second network is almost identical

except it pertains to a 12-h DA window and features

194 400 observations of zonal and meridional wind (u, y)

and temperature T at 0600, 1200, and 1800 UTC and will

be referred to as the 12-h network.

The standard deviation of observation error was 2 m s21

for the wind components and 1 K for temperature. For

simplicities sake and to check whether adaptive localiza-

tion provides any clear systematic benefit when the ob-

serving network is quasi-isotropic and quasi-homogeneous,

we let the observations subsample the T119L30 grid at

every third point in both the zonal and meridional di-

rections. In addition, no observations were included be-

tween the South Pole and 808S and the North Pole and

808N. In the vertical, observations were at every third

sigma level (for a total of 10 levels) beginning at the sigma

level immediately above the terrain pressure.

b. Generation of ensemble

A 128-member ensemble was generated using the

technique described in McLay et al. (2010) that is a

modification of the ensemble transform (ET) technique

described in McLay et al. (2008). The modification is

that in McLay et al. (2010) transformation coefficients

are computed for five distinct latitudinal bands and then

interpolated between the centers of the bands whereas

in McLay et al. (2008) only one set of global trans-

formation coefficients are computed. As pointed out in

McLay et al. (2008), the ET technique (Bishop and Toth

1999) is a variation on Toth and Kalnay’s (1997) breeding

technique and as such must be cycled for a few days in

order to ‘‘breed’’ growing structures. To this end, the 128-

member ET ensemble was cycled for 6 days preceding the

first DA window.

Because of the way they are generated, the ET en-

semble perturbation structure is entirely independent

of the error covariance functions used to define the

NAVDAS forecast error covariance model. Consequently,

the ET perturbations are not particularly well configured

to correct the difference between the experiments first

guess and pseudotruth because this difference is partially

determined by the NAVDAS forecast error covariance

functions. Mismatches between the distribution from

which forecast errors are drawn and the distribution

from which ensemble perturbations are drawn must also

occur in operational ensemble DA systems when known

and unknown sources of model error are not accurately

accounted for. Hence, the mismatch between the dis-

tribution from which our forecast error is drawn and that

from which our ensemble perturbations is drawn has

some very crude similarities to what occurs in opera-

tional ensemble DA schemes. When such distribution

mismatches are present, ensemble covariance localiza-

tion has two roles: to suppress spurious ensemble cor-

relations and to create variance in directions of error

that are not well sampled by the ensemble generation

process.

c. Tuning of localization functions

We compare three types of localization: NECL, where

P
f
P 5 ZZT �WWT; AECL, where P

f
P 5 ZZT � ZsZ

T
s �

ZsZ
T
s ; and PAECL, where P

f
P 5 P f� C

A
� C

N
5

ZZT � (ZsZ
T
s � ZsZ

T
s )� (WWT). The width of the cor-

relation functions associated with the NECL matrix

FIG. 1. The vertical profile of the root-mean-square error of the

prior first guess at 1200 UTC in zonal wind (gray line), meridional

wind (black line), and temperature (dashed line). The vertical axis

indicates the models vertical s-level index (level 30 is the earth’s

surface) while the horizontal axis indicates speed (m s21) for the

wind components and temperature (K) for the temperature.
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C
N

5 WWT are adjusted via two length parameters that

control the width of the horizontal and vertical functions

that define the columns of C
N

, while the width of the

correlation functions associated with the AECL matrix

CA 5 ZsZ
T
s � ZsZ

T
s is controlled by varying two smooth-

ing parameters that control the strength of the horizontal

and vertical smoothing applied to turn the raw ensemble

perturbations ZK into the smoothed ensemble perturba-

tions Zs. In principle, these parameters can be tuned to

optimize any given cost function. We chose to tune them

to optimize the cost function

J
observed

(t) 5
1

3

[u
post
err (t)]2

[u
prior
err (12)]2

1
[y

post
err (t)]2

[y
prior
err (12)]2

(

1
[Tpost

err (t)]2

[Tprior
err (12)]2

)
(10)

at the analysis time t 5 12, where [u
post
err (t)]2, [y

post
err (t)]2

and [Tpost
err (t)]2 give the global average of the square of

the posterior error of the state estimate in the tropo-

sphere of zonal wind u, meridional wind y, and tem-

perature T at 1200 UTC after the assimilation of

observations from the 6-h network. At the optimization

time t 5 1200 UTC, [u
post
err (t)]2, [y

post
err (t)]2, and [Tpost

err (t)]2

pertain to the error of the analysis obtained from (9).

At later times, t . 1200 UTC, [u
post
err (t)]2, [y

post
err (t)]2, and

[Tpost
err (t)]2 pertain to the error of the nonlinear forecast

initialized with the 1200 UTC analysis. The symbols,

[u
post
err (t)]2, [y

post
err (t)]2, and [Tpost

err (t)]2 give the global av-

erage in the troposphere of the square of the prior error

or first-guess error of the 12-h forecast initialized at

0000 UTC 24 June 2005 of zonal wind u, meridional

wind y, and temperature T before the assimilation of

observations. Hence, Jobserved(t) gives the average frac-

tional reduction in the error variance of the observed

variables due to the assimilation of observations. Al-

though not used for tuning the localization functions, we

also measured the fractional reduction in error variance

of the unobserved variables using

J
unobserved

(t) 5
1

2

[(p
s
)post

err (t)]2

[(p
s
)prior

err (12)]2
1

[q
post
err (t)]2

[q
prior
err (12)]2

8<:
9=;.

(11)

where the meaning of the overbars, subscripts, and su-

perscripts are the same as in (10), but ps and q denote the

unobserved variables of surface pressure and specific

humidity, respectively.

To ensure that global averages gave equal weight

to areas with the same surface area, gridpoint errors

were multiplied by the cosine of their latitude before

inclusion in the global sum in order to account for the

fact that the distance between NOGAPS Gaussian grid

points decreases with the cosine of latitude. To make

sure that the errors pertained primarily to the tropo-

sphere, only the lower 23 model levels corresponding

to the atmosphere around 100 hPa and below were in-

cluded.

As previously mentioned, each of the localization

methods was tuned to minimize the state estimation

error at the analysis time for the 6-h data assimilation

window. To see the effect of lengthening the observation

window, the localization tunings that minimized analysis

error variance of the observed variables for the 6-h

network were then used to assimilate observations from

the 12-h network.

Figure 2a depicts the evolution of the state estima-

tion error as measured by Jobserved(t) [(9)] from the

analysis time out to a 5-day forecast for all of the lo-

calization times and for both the 6- and 12-h observa-

tional networks. Figure 2b depicts the evolution of the

corresponding measure of the error in the unobserved

variables Junobserved(t). Figures 2a,b show that after

tuning the differing localization methods NECL, AECL,

and PAECL all give very similar 5-day forecast errors

for both observed and nonobserved variables and for

both the 6- and 12-h observational networks. All of the

approaches profoundly reduce state estimation error.

Figure 2a (Fig. 2b) shows that it takes about 96 h (84 h)

for the forecast error variance in the observed (un-

observed) variables to exceed the corresponding forecast

error variance of the first guess. For both the 6- and 12-h

networks, the analysis error obtained from AECL is

somewhat larger than that from NECL and PAECL.

However, for the 12-h network in particular, the 5-day

forecast error from AECL is smaller than NECL and

PAECL. However, none of these differences are large

enough to be statistically significant.

An interesting feature of Fig. 2b is that the error of the

forecast of the unobserved terrain pressure and humid-

ity variables decreases for the first 12 h of the forecast.

We speculate that this improvement is partially a result

of the dynamics of the nonlinear model bringing the

unobserved variables into an improved dynamical bal-

ance with the observed variables. As noted by Kepert

(2009), while one could expect analyses made with un-

localized ensemble covariances to satisfy linear balance

constraints at large scales, when localization is em-

ployed, imbalance is to be expected at all scales.

Using 128 Power 5 1 IBM processors at 1.9 GHz, it was

found that it took 53 and 73 min to obtain the 1200 UTC

analysis using NECL and PAECL, respectively. This

time was the same for both the 6- and 12-h DA windows

because the total number of observations was the same
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for both of these experiments. The relatively small dif-

ference in computational cost is due to the fact that the

tight nonadaptive localization (Fig. 6) required by

NECL corresponds to a nonadaptive localization matrix

W that has many more columns than the number of

columns in the W corresponding to the very broad local-

ization (Fig. 5) used for PAECL. As noted in Bishop et al.

(2011), the cost of localization can be reduced if one de-

fines the localization matrix on a coarser-resolution grid

than the raw ensemble perturbations. This method of

reducing computational cost was not employed in our

calculations. If we had employed a reduced-resolution

grid that had an order of magnitude fewer points than our

T119L30 grid, then one would expect an order of mag-

nitude reduction in the amount of time required for each

analysis. Were it not for the fact that the optimal tuning

for NECL gave the NECL covariance matrix many more

columns than that of the PAECL matrix, the margin by

which NECL was faster than PAECL would have been

even greater.

Since our adaptive localization functions are built

from ensemble perturbations, the quality of the adaptive

localization is closely linked to the quality of the en-

semble perturbations. If assimilating real data, this

quality depends on how well the ensemble generation

scheme accounts for all sources of error. Accounting for

unknown sources of model error is very difficult. In our

experiment, we modeled the error-ensemble mismatch

using distinctly different methods to create a pseudo-

first-guess error and the ensemble perturbations. The

mismatch created by our approach may be greater than

that between actual forecast error and ensemble per-

turbations from state-of-the-art ensemble generation

schemes. Consequently, the potential benefit of adaptive

localization could be greater than that suggested by our

results.

The results from Bishop and Hodyss (2007, 2009a)

indicate that adaptive localization is only likely to de-

liver large benefits when true error correlation functions

propagate a significant distance relative to the width

of the localization functions and/or when the true error

correlation length scales varies markedly from one lo-

cation to another. If the primary reason for the neutrality

of our results is short error propagation distances over 6–

12-h DA windows and weak spatial inhomogeneity of the

true error correlation length scale, then the neutrality of

our results is unlikely to change with an improved en-

semble model of the forecast error distribution.

4. The PAECL palette of localization functions

As previously mentioned, adaptive localization is

likely to be beneficial if covariance functions move

a significant distance relative to the localization length

scale and/or if the true error correlation length scale is

highly inhomogeneous. In this section, we compare and

contrast the effect of adaptive and nonadaptive locali-

zation functions at points on the globe where such

characteristics are likely to be found.

To find a point where the true error correlation

function is likely to exhibit significant propagation, we

searched for the maximum value of zonal wind at

s–level 15 (around 400 hPa) at 1200 UTC. The location

of this maximum value in zonal wind was found to be at

408S, 908E. This (winter) region is typically characterized

by strong baroclinic zonal jets so it was no surprise to find

the strongest zonal wind at this point. Figure 3 gives

horizontal and vertical perspectives of the unlocalized

FIG. 2. Normalized root-mean-square posterior error as a function of forecast time. Blue, red, and green curves

pertain to nonadaptive, partially adaptive, and purely adaptive localization. Dashed and solid curves pertain to the 6-

and 12-h data assimilation window, respectively. (a) The results for the mean of the normalized observed variables u,

y, and T [(10)]. (b) The corresponding results for the normalized unobserved variables ps and q [(11)].
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ensemble covariance function of meridional wind at

1800 (Figs. 3a,c) and 1200 UTC (Figs. 3b,d) with a single

1800 UTC meridional wind variable located at 408S,

908E. The function corresponds to a column of the un-

localized ensemble covariance matrix P f 5 ZZT. This

particular column was chosen because its diagonal ele-

ment corresponds to a local maximum in the westerly

zonal wind. The structure of this function is identical to

that of the single observation correction that would be

obtained from assimilating an observation at 1800 UTC

of meridional wind at the model grid point at 408S, 908E

and s-level 15 (about 400 hPa). The horizontal cross

section of the 1800 UTC covariance function shown in

Fig. 3a features a positive region centered around 408S,

908E and s-level 15 with negative regions to the east and

west of this central region. Because this pattern is not

unlike that of a baroclinic wave packet (Zimin et al.

2003), it is conceivable that the wavelike pattern of

covariance stretching from 658 to 1058E is not spurious.

However, it would be more difficult to argue that the

undulations between 508 and 608S together with those

equatorward of 158S represent nonspurious covariances.

Figure 3b shows that the 1200 UTC covariance function

is broadly similar to the 1800 UTC covariance function

except that it lies 88–108W (upstream) of the 1800 UTC

covariance function. This is unsurprising given the

strong westerly winds associated with this location.

Figures 3c,d give the corresponding vertical structure

at 1800 and 1200 UTC, respectively. Interestingly, from

the surface to sigma level 15, the functions tilt westward

with increasing height in a manner that is qualitatively

similar to a growing baroclinic wave. Also note that

upper-level features lie a greater distance to the west of

lower-level features at 1200 than at 1800 UTC. This

change of vertical tilt with time is reminiscent of non-

modal baroclinic wave growth (Farrell 1989).

FIG. 3. Unlocalized ensemble covariance function of meridional wind at 1800 and 1200 UTC with 1800 UTC

meridional wind variables at 408S, 908E and s-level 15 (about 400 hPa). The ensemble has 128 members. The hor-

izontal cross sections at s-level 15 of the covariance function at (a) 1800 and (b) 1200 UTC. The zonally oriented

vertical cross sections at 408S of the covariance function at (c) 1800 and (d) 1200 UTC.
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Figure 4 gives the AECL localization function corre-

sponding to Fig. 3. Figure 4a shows that at the 1800 UTC

time, the 0.1 contour of the adaptive localization func-

tion stretches from 308 to 508S and from about 808 to

1088E. Figure 4b shows that the function to moderate

the raw ensemble covariances at 1200 UTC is similar to

that for 1800 UTC except the pattern is shifted about

68W of the 1800 UTC localization function. This move-

ment is consistent though a little slower than the apparent

movement of the raw covariance function shown in Fig. 3.

Figures 4c,d show that the adaptive localization function

tilts westward with height and, hence, is well suited to

preserving the westward tilt of the raw covariance func-

tion shown in Fig. 3.

What Fig. 4 does not show is that the AECL locali-

zation function has oscillations in the Northern Hemi-

sphere with isolated maxima as large as 0.1. The

nonadaptive part CN 5 WWT of the PAECL scheme

was introduced to attenuate such far-field oscillations of

the AECL. For this purpose, the localization functions

associated with CN 5 WWT were designed to have no

vertical variation but a very broad horizontal variation.

The structure of the column of CN 5 WWT corre-

sponding to Figs. 3 and 4 that optimized the DA per-

formance of PAECL is shown in Fig. 5. Note that this

function is broad enough to preserve the significant parts

of the AECL localization function shown in Fig. 4 and

most of the raw covariance function (Fig. 3) that is likely

to be nonspurious at both 1800 and 1200 UTC.

The full PAECL localization function (column of

CA � CN) corresponding to Fig. 3 is not shown here

because it is almost identical to that shown in Fig. 4. This

is because the nonadaptive part (Fig. 5) is so much

broader than the adaptive part (Fig. 4). As such, we use

Fig. 4 as a proxy for the full PAECL localization func-

tion.

It is of interest to compare this proxy for the PAECL

localization function with the purely NECL localization

FIG. 4. The AECL function for the raw covariance function shown in Fig. 3 is shown. This localization function is

the element-wise square of the correlation function of a 128-member ensemble of smoothed and normalized

streamfunction fields.
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function shown in Fig. 6. This nonadaptive localization

function has been tuned to minimize the area-weighted

average of analysis error. It has a slightly reduced hori-

zontal scale relative to PAECL having a 0.1 contour

stretching 328–488S and 808–1008E. Comparison of Figs.

6b and 4c, however, shows that it has a significantly

smaller vertical scale than the PAECL function. Note

that the nonadaptive localization function is the same at

both 1200 and 1800 UTC.

Figures 7 and 8 give the raw ensemble covariance

functions localized with PAECL and NECL, respec-

tively. Figure 7 shows that PAECL preserves much of

the positive central lobe and the eastern negative lobe of

the raw ensemble covariance function at both 1800 and

1200 UTC. At both 1800 and 1200 UTC, PAECL allows

the central positive lobe to have a larger magnitude than

the eastern negative lobe—as it is in the raw covari-

ance function. In contrast, because the 1200 UTC non-

adaptive localization function does not lie to the east

of the 1800 UTC nonadaptive localization function,

NECL forces the negative eastern lobe to have a larger

magnitude than the positive lobe at 1200 UTC. In ad-

dition, PAECL preserves much more of the vertical

structure of the raw ensemble covariance than NECL.

However, we must recall that the covariance functions

displayed in Figs. 7 and 8 pertain to a point where the

ensemble mean zonal wind is maximized; hence, most

points on the globe would be in less need of adaptive

localization than the point shown in Figs. 7 and 8. This

may be why we did not find a significant benefit from

adaptive localization.

While Figs. 3 to 8 give insight into how PAECL can

accommodate moving error fields, Fig. 9 compares and

contrasts the wide variety of 3D localization function

structures provided by PAECL with those given by

NECL localization for 4 points in the Northern Hemi-

sphere. Figure 9 shows that, on average, the horizontal

extent of the PAECL localization functions is similar to

that of the NECL localization functions while the ver-

tical extent of PAECL localization functions is greater

than that of the NECL localization function.

The localization functions that minimize area-averaged

root-mean-square analysis error in our experiments are

considerably narrower than those used by Buehner et al.

(2010a,b). In their EnKF and (for the sake of consistency)

FIG. 5. This is the very broadscale horizontal nonadaptive lo-

calization function that is used to attenuate spurious far-field fea-

tures of the adaptive localization function shown in Fig. 4. Note

that this nonadaptive localization function has no vertical varia-

tion.

FIG. 6. As in Figs. 4a,c, but the NECL function is shown. (The

function is the same at 1800 and 1200 UTC.)
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the various flavors of ensemble 4D-VAR considered in

their study, the horizontal localization function goes to

0.2 of its maximum value 1400 km away from the func-

tion maximum and to zero 2800 km away from the

function maximum. In contrast, Figs. 4 and 6 indicate

that both our adaptive and nonadaptive localization

functions are below 0.1 of their maximum values about

1000 km away from their respective function maxi-

mums. The 2800-km localization limit used in Buehner

et al. (2010a,b) was first arrived at as part of the study by

Mitchell et al. (2002) on ensemble size and balance is-

sues in the Environment Canada (EC) stochastic EnKF.

Researchers at EC have steadily improved their EnKF

since that time [see Houtekamer et al. (2009) for a more

recent description of the system]. However, no intense

effort has been made since Mitchell et al. (2002) to retune

their EnKF localization limit as it was felt that the few

experiments that have been performed with differing

localization limits did not justify an extensive tuning ef-

fort for this parameter (H. L. Mitchell 2010, personal

communication).

In reflecting on why our optimal localization limit is so

different to that obtained by Mitchell et al. (2002), it is

worth recalling that their EnKF assimilates observations

in sequential batches. The same localization function

is applied to each batch regardless of how effectively

preceding batches of observations have removed error

from large scales. This invariance of the localization

function to previous observations assimilated means

that the correction obtained from sequential assimila-

tion will be somewhat different to that which would be

obtained by assimilating all of the observations in one

large batch—as is done in our ensemble 4D-VAR. With

this in mind, we speculate that the difference in hori-

zontal correlation length scale may be a result of (i)

fundamental differences in the optimal scale of locali-

zation functions for ensemble 4D-VAR and the se-

quential EnKF, (ii) the high density and quasi-isotropic

nature of our idealized network favoring shorter local-

ization length scales than the more anisotropic network

found in the real atmosphere, (iii) our area-averaged

measure of analysis error giving more weight to the

FIG. 7. As in Fig. 3, but the raw ensemble covariance function has been localized with the PAECL.
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accuracy of analyses at tropical grid points than the

various measures used by Mitchell et al. (2002) to tune

their localization length scale, and/or (iv) McLay et al.’s

(2010) ensemble generation technique causing ensem-

ble perturbations to decorrelate over shorter distances

than those of ensemble perturbations generated by the

EnKF.

5. Conclusions

A new ensemble covariance localization technique

that blends adaptive localization with nonadaptive lo-

calization has been presented. The method includes

nonadaptive ensemble covariance localization and purely

adaptive localization as special cases. It was shown how

a square root theorem enables the scheme to be incor-

porated into global 4D variational algorithms. To dem-

onstrate the technique, both nonadaptive and adaptive

ensemble covariance localization approaches were tuned

to minimize globally averaged mean square analysis error

with both 6- and 12-h data assimilation windows. It was

found that while the adaptive localization functions pro-

duced showed a high degree of adaptability in both space

and time, they were not significantly better than non-

adaptive localization functions at reducing forecast or

analysis error.

Bishop and Hodyss (2007, 2009a) found clear benefits

from adaptive localization when the ensemble pertur-

bations were drawn from precisely the same distribution

as the distribution of forecast errors. In our experiment,

the error-ensemble mismatch was modeled by using

distinctly different methods to create a pseudo-first-guess

error and the ensemble perturbations. It is possible that

the mismatch created by our approach is greater than that

between actual forecast error and ensemble perturba-

tions from state-of-the-art ensemble generation schemes.

If so, then the potential benefit of adaptive localization is

greater than that suggested by our results.

Other possible reasons for the failure of adaptive lo-

calization to show benefit in our experiments include the

FIG. 8. As in Fig. 7, but the raw ensemble covariance function has been localized with the NECL.
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possibility that (i) the movement of error correlation

functions over 6- and 12-h data assimilation windows is

not large enough for adaptive localization to show a clear

advantage, and/or (ii) the spatial inhomogeneity of the

true error correlation functions is not large enough for

adaptive localization to show a benefit. If the primary

reason for the neutrality of our results is short error

propagation distances and weak spatial inhomogeneity of

the true error correlation length scale over 6–12-h DA

windows, then the neutrality of our results is unlikely to

change with an improved ensemble model of the forecast

error distribution.

The single case studied here is not enough to reveal

whether or not there is a small, but significant difference

between adaptive and nonadaptive localization in our

idealized system. However, because of the somewhat

contrived nature of our first-guess error and the

mismatch of our ensemble covariances with this first-

guess error, identifying a small but significant difference

from repeated experiments would be of little relevance

to the design of candidate operational ensemble DA

schemes.

Future research will be aimed at incorporating both

adaptive and nonadaptive ensemble covariances into the

Navy’s operational 4D-VAR scheme (NAVDAS-AR)

and then performing cycling data assimilation and fore-

casting experiments. Hopefully, these experiments will

reveal significant (but probably small) differences in the

performance of adaptive and nonadaptive localization.
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FIG. 9. Comparison of structure of optimally tuned (a) adaptive and (b) nonadaptive localization functions at

1200 UTC for 4 grid points in the Northern Hemisphere all situated at the same latitude (458N) and s-level 15 (about

400 hPa), but all separated by 908 of longitude (08, 908, 1808, 2708E) and 458N at model s-level 15 (about 400 hPa).

The corresponding vertical structure of the (c) adaptive and (d) nonadaptive localization functions along the 458N

latitude circle.
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APPENDIX

Creating Smooth Normalized Perturbations

The smoothed ensemble members are obtained from

the following steps:

1) Create ensemble perturbations that are normalized

by their ensemble standard deviation; that is, if xijtq

denotes the perturbation of the qth variable type at

the tth output time at the jth model grid point of the

ith ensemble member, normalize this variable using

~xijtq 5 xijtq/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
K�1�

K

i 5 1(xijtq)2
r

.

2) Smooth over variable types by performing a weighted

average over variable type using x̂ijtq 5 �n-

q951w
q9
q ~xs

ijtq9,

where �n-

q951w
q9
q 5 1. Let the vector of variable smoothed

ensemble perturbations resulting from this procedure

be denoted by x̂i. Considerable time can be saved

by using univariate localization functions. Univariate

adaptive localization is obtained by letting w
q9
q5i 5 w

q9
q5 j

for any variable type i and j.

3) Smooth the variables x̂i over space to obtain x̂s
i by

first smoothing in the horizontal and then in the

vertical or vice versa.

If x̂s
ijtq denotes the element of x̂s

i corresponding to the

qth variable type at the tth output time at the j th model

grid point of the ith ensemble member, normalize this

variable using zs
ijtq 5 [x̂s

ijtq/�K

i51(x̂s
ijtq)2]. The vector zs

i

listing the variables obtained through this procedure

gives the ith column of the smoothed normalized en-

semble matrix Zs which makes ZsZ
T
s 5 �L

i51z
s
i z

sT
i be a

correlation matrix.

In this paper, we used a univariate localization based

solely on the streamfunction; in other words, for all

values of q, we set wq
q9 5 0 if q9 indicated a non-

streamfunction variable, but wq
q9 5 1 if q9 indicated the

streamfunction variable. We also used a slight variation

of the above generalized approach in which the part of

zs
i associated with the terrain pressure ps was given by

the smoothed and normalized value of the stream-

function on the model’s fifth-lowest vertical level (ap-

proximately 900 mb). We did not use the lowest level

because streamfunction tends to zero at the lowest model

level.
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